Provulis LLC


MIS protein analogs and their applications



Proc Natl Acad Sci U S A. 2017 Jan 30. pii: 201620729. doi: 10.1073/pnas.1620729114. [Epub ahead of print]

AMH/MIS as a contraceptive that protects the ovarian reserve during chemotherapy.

Kano M1,2Sosulski AE1,2Zhang L1,2Saatcioglu HD1,2Wang D3Nagykery N1,2Sabatini ME4Gao G3Donahoe PK5,2Pépin D5,2.


The ovarian reserve represents the stock of quiescent primordial follicles in the ovary which is gradually depleted during a woman's reproductive lifespan, resulting in menopause. Müllerian inhibiting substance (MIS) (or anti-Müllerian hormone/AMH), which is produced by granulosa cells of growing follicles, has been proposed as a negative regulator of primordial follicle activation. Here we show that long-term parenteral administration of superphysiological doses of MIS, using either an adeno-associated virus serotype 9 (AAV9) gene therapy vector or recombinant protein, resulted in a complete arrest of folliculogenesis in mice. The ovaries of MIS-treated mice were smaller than those in controls and did not contain growing follicles but retained a normal ovarian reserve. When mice treated with AAV9/MIS were paired with male breeders, they exhibited complete and permanent contraception for their entire reproductive lifespan, disrupted vaginal cycling, and hypergonadotropic hypogonadism. However, when ovaries from AAV9-MIS-treated mice were transplanted orthotopically into normal recipient mice, or when treatment with the protein was discontinued, folliculogenesis resumed, suggesting reversibility. One of the important causes of primary ovarian insufficiency is chemotherapy-induced primordial follicle depletion, which has been proposed to be mediated in part by increased activation. To test the hypothesis that MIS could prevent chemotherapy-induced overactivation, mice were given carboplatin, doxorubicin, or cyclophosphamide and were cotreated with AAV9-MIS, recombinant MIS protein, or vehicle controls. We found significantly more primordial follicles in MIS-treated animals than in controls. Thus treatment with MIS may provide a method of contraception with the unique characteristic of blocking primordial follicle activation that could be exploited to prevent the primary ovarian insufficiency often associated with chemotherapy.

PMID: 28137855 DOI: 10.1073/pnas.1620729114


Technology. 2013 Sep;1(1):63-71.

An albumin leader sequence coupled with a cleavage site modification enhances the yield of recombinant C-terminal Mullerian Inhibiting Substance.

Pépin D1Hoang M2Nicolaou F3Hendren K3Benedict LA1Al-Moujahed A4Sosulski A1Marmalidou A4Vavvas D4Donahoe PK1.


Mullerian Inhibiting Substance (MIS) has been shown to inhibit ovarian cancer cells both in-vitro and in-vivo. Furthermore, recent evidence suggests that MIS may effectively target a putative ovarian cancer progenitor cell population enriched by a panel of CD44+, CD24+, Ep-CAM+, and E-cadherin-cell surface markers. In order to accommodate clinical testing of MIS in ovarian cancer patients, the production of recombinant human MIS must be optimized to increase yield and purity. Here we show that, compared to wild type, the substitution of the MIS leader sequence to that of human serum albumin, combined with a modification of the endogenous cleavage site from RAQR/S to a furin/kex2 RARR/S consensus site results in high expression, increased C-terminus cleavage and a reduction in unwanted cryptic internal cleavage products when produced in CHO cells. Purified MIS containing these alterations retains its capacity to induce regression of the Mullerian duct in fetal rat embryonic urogenital ridge assays.

Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):E4418-27. doi: 10.1073/pnas.1510604112. Epub 2015 Jul 27.

AAV9 delivering a modified human Mullerian inhibiting substance as a gene therapy in patient-derived xenografts of ovarian cancer.

Pépin D1Sosulski A1Zhang L1Wang D2Vathipadiekal V3Hendren K1Coletti CM1Yu A1Castro CM3Birrer MJ3Gao G2Donahoe PK4.

Author information


To improve ovarian cancer patient survival, effective treatments addressing chemoresistant recurrences are particularly needed. Mullerian inhibiting substance (MIS) has been shown to inhibit the growth of a stem-like population of ovarian cancer cells. We have recently engineered peptide modifications to human MIS [albumin leader Q425R MIS (LRMIS)] that increase production and potency in vitro and in vivo. To test this novel therapeutic peptide, serous malignant ascites from highly resistant recurrent ovarian cancer patients were isolated and amplified to create low-passage primary cell lines. Purified recombinant LRMIS protein successfully inhibited the growth of cancer spheroids in vitro in a panel of primary cell lines in four of six patients tested. Adeno-associated virus (AAV) -delivered gene therapy has undergone a clinical resurgence with a good safety profile and sustained gene expression. Therefore, AAV9 was used as a single i.p. injection to deliver LRMIS to test its efficacy in inhibiting growth of palpable tumors in patient-derived ovarian cancer xenografts from ascites (PDXa). AAV9-LRMIS monotherapy resulted in elevated and sustained blood concentrations of MIS, which significantly inhibited the growth of three of five lethal chemoresistant serous adenocarcinoma PDXa models without signs of measurable or overt toxicity. Finally, we tested the frequency of MIS type II receptor expression in a tissue microarray of serous ovarian tumors by immunohistochemistry and found that 88% of patients bear tumors that express the receptor. Taken together, these preclinical data suggest that AAV9-LRMIS provides a potentially well-tolerated and effective treatment strategy poised for testing in patients with chemoresistant serous ovarian cancer.